人工智能排序算法(4):快速排序 人工智能算法大全_AI算法 第1张

一、前言

快速排序是一种交换排序,它由C. A. R. Hoare在1962年提出。

二、算法思想

快速排序的基本思想是:通过一趟排序将要排序的数据分割成独立的两部分:分割点左边都是比它小的数,右边都是比它大的数。

然后再按此方法对这两部分数据分别进行快速排序,整个排序过程可以递归进行,以此达到整个数据变成有序序列。

动态效果示意图:

 人工智能排序算法(4):快速排序 人工智能算法大全_AI算法 第2张

编辑


详细的图解往往比大堆的文字更有说明力,所以直接上图:

 人工智能排序算法(4):快速排序 人工智能算法大全_AI算法 第3张

上图中,演示了快速排序的处理过程:

初始状态为一组无序的数组:2、4、5、1、3。

经过以上操作步骤后,完成了第一次的排序,得到新的数组:1、2、5、4、3。

新的数组中,以2为分割点,左边都是比2小的数,右边都是比2大的数。

因为2已经在数组中找到了合适的位置,所以不用再动。

2左边的数组只有一个元素1,所以显然不用再排序,位置也被确定。(注:这种情况时,left指针和right指针显然是重合的。因此在代码中,我们可以通过设置判定条件left必须小于right,如果不满足,则不用排序了)。

而对于2右边的数组5、4、3,设置left指向5,right指向3,开始继续重复图中的一、二、三、四步骤,对新的数组进行排序。

1、代码

C++:

C++

#include <iostream>#include <vector> using namespace std; int division(vector<int> &list, int left, int right){    // 以最左边的数(left)为基准    int base = list[left];    while (left < right) {        // 从序列右端开始,向左遍历,直到找到小于base的数        while (left < right && list[right] >= base)            right--;        // 找到了比base小的元素,将这个元素放到最左边的位置        list[left] = list[right];         // 从序列左端开始,向右遍历,直到找到大于base的数        while (left < right && list[left] <= base)            left++;        // 找到了比base大的元素,将这个元素放到最右边的位置        list[right] = list[left];    }     // 最后将base放到left位置。此时,left位置的左侧数值应该都比left小;    // 而left位置的右侧数值应该都比left大。    list[left] = base;    return left;} // 快速排序void QuickSort(vector<int> &list, int left, int right){    // 左下标一定小于右下标,否则就越界了    if (left < right) {        // 对数组进行分割,取出下次分割的基准标号        int base = division(list, left, right);         // 对“基准标号“左侧的一组数值进行递归的切割,以至于将这些数值完整的排序        QuickSort(list, left, base - 1);         // 对“基准标号“右侧的一组数值进行递归的切割,以至于将这些数值完整的排序        QuickSort(list, base + 1, right);    }} void main(){    int arr[] = { 6, 4, 8, 9, 2, 3, 1 };    vector<int> test(arr, arr + sizeof(arr) / sizeof(arr[0]));    cout << "排序前" << endl;    for (int i = 0; i < test.size(); i++){        cout << test[i] << " ";    }    cout << endl;    vector<int> result = test;    QuickSort(result, 0, result.size() - 1);    cout << "排序后" << endl;    for (int i = 0; i < result.size(); i++){        cout << result[i] << " ";    }    cout << endl;    system("pause");}

运行结果:

 人工智能排序算法(4):快速排序 人工智能算法大全_AI算法 第4张

Python:

Python


# -*- coding:utf-8 -*- def QuickSort(input_list, left, right):    '''    函数说明:快速排序(升序)    Author:        www.cuijiahua.com    Parameters:        input_list - 待排序列表    Returns:        无    '''        def division(input_list, left, right):        '''        函数说明:根据left和right进行一次扫描,重新找到基准数        Author:            www.cuijiahua.com        Parameters:            input_list - 待排序列表            left - 左指针位置            right - 右指针位置        Returns:            left - 新的基准数位置        '''            base = input_list[left]        while left < right:            while left < right and input_list[right] >= base:                right -= 1            input_list[left] = input_list[right]            while left < right and input_list[left] <= base:                left += 1            input_list[right] = input_list[left]        input_list[left] = base        return left     if left < right:        base_index = division(input_list, left, right)        QuickSort(input_list, left, base_index - 1)        QuickSort(input_list, base_index + 1, right) if __name__ == '__main__':    input_list = [6, 4, 8, 9, 2, 3, 1]    print('排序前:', input_list)    QuickSort(input_list, 0, len(input_list) - 1)    print('排序后:', input_list)

运行结果同上。

三、算法分析

1、快速排序算法的性能

 人工智能排序算法(4):快速排序 人工智能算法大全_AI算法 第5张

编辑


2、时间复杂度

当数据有序时,以第一个关键字为基准分为两个子序列,前一个子序列为空,此时执行效率最差。

而当数据随机分布时,以第一个关键字为基准分为两个子序列,两个子序列的元素个数接近相等,此时执行效率最好。

所以,数据越随机分布时,快速排序性能越好;数据越接近有序,快速排序性能越差。

3、时间复杂度

快速排序在每次分割的过程中,需要 1 个空间存储基准值。而快速排序的大概需要 NlogN次的分割处理,所以占用空间也是 NlogN 个。

4、算法稳定性

在快速排序中,相等元素可能会因为分区而交换顺序,所以它是不稳定的算法。