零基础入门深度学习(1) - 感知器 AI教程 第1张

无论即将到来的是大数据时代还是人工智能时代,亦或是传统行业使用人工智能在云上处理大数据的时代,作为一个有理想有追求的程序员,不懂深度学习(Deep Learning)这个超热的技术,会不会感觉马上就out了?现在救命稻草来了,《零基础入门深度学习》系列文章旨在讲帮助爱编程的你从零基础达到入门级水平。零基础意味着你不需要太多的数学知识,只要会写程序就行了,没错,这是专门为程序员写的文章。虽然文中会有很多公式你也许看不懂,但同时也会有更多的代码,程序员的你一定能看懂的(我周围是一群狂热的Clean Code程序员,所以我写的代码也不会很差)。

文章列表

零基础入门深度学习(1) - 感知器 
零基础入门深度学习(2) - 线性单元和梯度下降 
零基础入门深度学习(3) - 神经网络和反向传播算法 
零基础入门深度学习(4) - 卷积神经网络 
零基础入门深度学习(5) - 循环神经网络 
零基础入门深度学习(6) - 长短时记忆网络(LSTM) 
零基础入门深度学习(7) - 递归神经网络

深度学习是啥

在人工智能领域,有一个方法叫机器学习。在机器学习这个方法里,有一类算法叫神经网络。神经网络如下图所示:

 零基础入门深度学习(1) - 感知器 AI教程 第2张

上图中每个圆圈都是一个神经元,每条线表示神经元之间的连接。我们可以看到,上面的神经元被分成了多层,层与层之间的神经元有连接,而层内之间的神经元没有连接。最左边的层叫做输入层,这层负责接收输入数据;最右边的层叫输出层,我们可以从这层获取神经网络输出数据。输入层和输出层之间的层叫做隐藏层

隐藏层比较多(大于2)的神经网络叫做深度神经网络。而深度学习,就是使用深层架构(比如,深度神经网络)的机器学习方法。

那么深层网络和浅层网络相比有什么优势呢?简单来说深层网络能够表达力更强。事实上,一个仅有一个隐藏层的神经网络就能拟合任何一个函数,但是它需要很多很多的神经元。而深层网络用少得多的神经元就能拟合同样的函数。也就是为了拟合一个函数,要么使用一个浅而宽的网络,要么使用一个深而窄的网络。而后者往往更节约资源。

深层网络也有劣势,就是它不太容易训练。简单的说,你需要大量的数据,很多的技巧才能训练好一个深层网络。这是个手艺活。

感知器

看到这里,如果你还是一头雾水,那也是很正常的。为了理解神经网络,我们应该先理解神经网络的组成单元——神经元。神经元也叫做感知器。感知器算法在上个世纪50-70年代很流行,也成功解决了很多问题。并且,感知器算法也是非常简单的。

感知器的定义

下图是一个感知器:

 零基础入门深度学习(1) - 感知器 AI教程 第3张

 零基础入门深度学习(1) - 感知器 AI教程 第4张

 零基础入门深度学习(1) - 感知器 AI教程 第5张

 零基础入门深度学习(1) - 感知器 AI教程 第6张

感知器还能做什么

事实上,感知器不仅仅能实现简单的布尔运算。它可以拟合任何的线性函数,任何线性分类线性回归问题都可以用感知器来解决。前面的布尔运算可以看作是二分类问题,即给定一个输入,输出0(属于分类0)或1(属于分类1)。如下面所示,and运算是一个线性分类问题,即可以用一条直线把分类0(false,红叉表示)和分类1(true,绿点表示)分开。

 零基础入门深度学习(1) - 感知器 AI教程 第7张

然而,感知器却不能实现异或运算,如下图所示,异或运算不是线性的,你无法用一条直线把分类0和分类1分开。

 零基础入门深度学习(1) - 感知器 AI教程 第8张

微信图片_20170802114228.png 零基础入门深度学习(1) - 感知器 AI教程 第9张

编程实战:实现感知器

对于程序员来说,没有什么比亲自动手实现学得更快了,而且,很多时候一行代码抵得上千言万语。接下来我们就将实现一个感知器。

下面是一些说明:

  • 使用python语言。python在机器学习领域用的很广泛,而且,写python程序真的很轻松。

  • 面向对象编程。面向对象是特别好的管理复杂度的工具,应对复杂问题时,用面向对象设计方法很容易将复杂问题拆解为多个简单问题,从而解救我们的大脑。

  • 没有使用numpy。numpy实现了很多基础算法,对于实现机器学习算法来说是个必备的工具。但为了降低读者理解的难度,下面的代码只用到了基本的python(省去您去学习numpy的时间)。

下面是感知器类的实现,非常简单。去掉注释只有27行,而且还包括为了美观(每行不超过60个字符)而增加的很多换行。

微信图片_20170802115052.png 零基础入门深度学习(1) - 感知器 AI教程 第10张

 零基础入门深度学习(1) - 感知器 AI教程 第11张

 零基础入门深度学习(1) - 感知器 AI教程 第12张

 零基础入门深度学习(1) - 感知器 AI教程 第13张

 零基础入门深度学习(1) - 感知器 AI教程 第14张

神奇吧!感知器竟然完全实现了and函数。读者可以尝试一下利用感知器实现其它函数。

小结

终于看(写)到小结了...,大家都累了。对于零基础的你来说,走到这里应该已经很烧脑了吧。没关系,休息一下。值得高兴的是,你终于已经走出了深度学习入门的第一步,这是巨大的进步;坏消息是,这仅仅是最简单的部分,后面还有无数艰难险阻等着你。不过,你学的困难往往意味着别人学的也困难,掌握一门高门槛的技艺,进可糊口退可装逼,是很值得的。

下一篇文章,我们将讨论另外一种感知器:线性单元,并由此引出一种可能是最最重要的优化算法:梯度下降算法。

参考资料

  1. Tom M. Mitchell, "机器学习", 曾华军等译, 机械工业出版社